Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 663: 644-655, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38430834

RESUMO

Triple-negative breast cancer (TNBC) is insensitive to conventional therapy due to its highly invasive nature resulting in poor therapeutic outcomes. Recent studies have shown multiple genes associated with ferroptosis in TNBC, suggesting an opportunity for ferroptosis-based treatment of TNBC. However, the efficiency of present ferroptosis agents for cancer is greatly restricted due to lack of specificity and low intracellular levels of H2O2 in cancer cells. Herein, we report a nano-theranostic platform consisting of gold (Au)-iron oxide (Fe3O4) Janus nanoparticles (GION@RGD) that effectively enhances the tumor-specific Fenton reaction through utilization of near-infrared (NIR) lasers, resulting in the generation of substantial quantities of toxic hydroxyl radicals (•OH). Specifically, Au nanoparticles (NPs) converted NIR light energy into thermal energy, inducing generation of abundant intracellular H2O2, thereby enhancing the iron-induced Fenton reaction. The generated •OH not only lead to apoptosis of malignant tumor cells but also induce the accumulation of lipid peroxides, causing ferroptosis of tumor cells. After functionalizing with the activity-targeting ligand RGD (Arg-Gly-Asp), precise synergistic treatment of TNBC was achieved in vivo under the guidance of Fe3O4 enhanced T2-weighted magnetic resonance imaging (MRI). This synergistic treatment strategy of NIR-enhanced ferroptosis holds promise for the treatment of TNBC.


Assuntos
Ferroptose , Nanopartículas Metálicas , Nanopartículas Multifuncionais , Nanopartículas , Neoplasias , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Ouro/uso terapêutico , Peróxido de Hidrogênio , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Oligopeptídeos
2.
Transl Stroke Res ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100014

RESUMO

Intracerebral hemorrhage (ICH) is characterized by the disruption of cerebrovascular integrity, resulting in hematoma enlargement, edema formation, and physical damage in the brain parenchyma. Primary ICH also leads to secondary brain injury contributed by oxidative stress, dysregulated immune responses, and proteolysis. In this context, matrix metalloproteinases (MMPs) represent a ubiquitous superfamily of structurally related zinc-dependent endopeptidases capable of degrading all components of the extracellular matrix. They disrupt the blood-brain barrier and promote neuroinflammation. Importantly, several MMP members are upregulated following ICH, and members may have different functions at specific periods in ICH. Hence, the modulation and function of MMPs are more complex than expected. Extracellular matrix metalloproteinase inducer (EMMPRIN, CD147) is a transmembrane glycoprotein that induces the production of MMPs. In this review, we systematically discuss the biology and functions of MMPs and EMMPRIN/CD147 in ICH and the complex crosstalk between them.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...